TI

Studies on the Stereochemistry of Aplyronine A: Determination of the Stereochemistry of the C21–C34 Fragment

Makoto Ojika, Hideo Kigoshi, Takeshi Ishigaki, Masanori Nisiwaki, Itaru Tsukada, Kazuhiro Mizuta, and Kiyoyuki Yamada*

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464, Japan

Abstract: The absolute stereochemistry of the C21-C34 fragment 2 of aplyronine A (1), a potent antitumor substance of marine origin, was determined by the enantioselective synthesis.

Aplyronine A (1) is a potent antitumor substance isolated from the sea hare *Aplysia kurodai*. We have elucidated the gross structure¹ of 1 by means of the spectral analysis and the degradation experiments. Further, we have deduced the relative stereochemistry of three contiguous chiral centers C23–C25 and established that of four contiguous chiral centers C29–C32 in 1 to be I and II respectively, based on the ¹H NMR data of the degradation products, 2 and 3, of $1.^2$ In this communication, we report the elucidation of the relative stereochemistry of four contiguous chiral centers C23–C26 by comparison of the spectral data of the synthetic model compounds 7a–7h with those of natural C21–C34 fragment 3 and also describe the determination of the absolute stereochemistry of the C21–C34 fragment 2 by the enantioselective synthesis.

We have deduced the stereochemistry of the C23-C25 part to be *syn-anti* as shown in I on the basis of the coupling constants in the ¹H NMR spectrum of acetonide 3²: the coupling constant values³ concerned in 3 were not typical for *syn* and *anti* configurations, presumably because the acetonide ring in 3 adopted a distorted chair conformation, and this configurational assignment was not so definitive. In order to elucidate the stereochemistry of the C23-C26 part unambiguously, we have synthesized eight diastereoisomers of

Reagents and Reaction Conditions.

(a) 1. Swern oxidation; 2. (i-PrO)₂P(O)CH₂COOEt, t-BuOK, t-BuOH, -78 °C; 3. DIBAL, CH₂Cl₂, hexane, -78 °C.

- (b) 1. Swern oxidation; 2. CBr₄, PPh₃, CH₂Cl₂, 0 °C; 3. *n*-BuLi, CICOOMe, THF, -78 → 23 °C; 4. H₂, Lindlar cat., quinoline, hexane, 23 °C; 5. DIBAL, CH₂Cl₂, -78 °C.
- (c) 1. Ti(O-Pr-i)₄, (+)-diethyl tartrate, t-BuOOH, CH₂Cl₂, -23 °C; 2. Me₂CuLi, ether, -40 \rightarrow -23 °C.
- (d) 1. Ti(O-Pr-*i*)₄, (-)-diethyl tartrate, *t*-BuOOH, CH₂Cl₂, -23 °C; 2. Me₂CuLi, ether, -40 \rightarrow -23 °C.
- (e) 1. MCPBA, CH_2Cl_2 , -10 \rightarrow 0 °C; 2. Me₂CuLi, ether, -40 \rightarrow 0 °C.
- (f) 1. TBDPS-CI, imidazole, DMF, 0 °C; 2. AcOH, H2O, 23 °C; 3. Me3CCOCI, pyr, 0 °C;
- 4. Me₂C(OMe)₂, CSA, acetone, 23 °C.
- Yields are not optimized. J values are in Hz and chemical shifts (CDCl₃) in parentheses.
- † The starting compound 5b was recovered (50%).

- (a) 1. n-Bu4NF, THF, 23 °C; 2. p-TsCl, pyr, 0 °C; 3. NaCN, DMSO, 80 °C (88%).
- (b) 1. DIBAL, CH2Cl2, -78 °C; 2. AcOH, H2O, THF, 23 °C; 3. Swern oxidation (49%).
- (c) 1. TBDMS-CI, imidazole, DMF, 0 °C; 2. BnBr, NaH, DMF, THF, 23 °C; 3. AcOH, EtOH, H₂O, 23 °C; 4. p-TsCl, pyr, 0 °C; 5. K₂CO₃, MeOH, 0 °C; 5. 1,3-dithiane, n-BuLi, THF, 23 °C;
 - 6. BnBr, NaH, DMF, THF, 23 °C (68%).
- (d) 1. CuCl₂, CuO, acetone, H₂O, reflux; 2. NaBH₄, EtOH, -30 °C; 3. MOM-Cl, *i*-Pr₂NEt, CH₂Cl₂, 23 °C; 4. n-Bu4NF, THF, 23 °C; 5. I2, PPh3, imidazole, benzene, 10 °C; 6. PPh8, acetonitrile, 90 °C (58%). (e) 9, NaN(TMS)₂, toluene, -78 → 23 °C (44% from 9).
- (f) 1. H2, Pd/C, EtOH, 23 °C; 2. HCl, MeOH, H2O, 23 °C; 3. TrCl, pyr, 80 °C, then Ac2O, 23 °C;
- 4. AcOH, H₂O, 80 °C; 5. p-BrC₆H₄NCO, pyr, 23 °C (37%).

acetonides 7a-7h by applying Kishi's methods for polypropionates synthesis⁴ (Scheme 1). The alcohol 4a,⁵ obtained from cis-2-buten-1,4-diol, was converted into trans- and cis-allyl alcohols 5a⁶ and 5b using Kishi's protocol.⁴ Epoxidation of allyl alcohols 5a and 5b by using Sharpless or MCPBA oxidation followed by treatment with Me₂CuLi afforded four diastereomeric diols 6a-6d. Using the same sequence of reactions, four diastereomeric diols 6e-6h were prepared from alcohol 4b.7 The diastereomeric diols 6a-6h were transformed into acetonides 7a-7h, respectively (Scheme 1). The selected ¹H NMR spectral data of eight diastereometric acetonides 7a-7h are summarized in Scheme 1. The ¹H NMR spectral data³ of the natural C21-C34 fragment 3 were nearly identical with those of acetonide 7b with respect to the coupling constants of protons on an acetonide moiety and the chemical shifts of secondary methyl groups. Thus, the stereochemistry of the C23-C26 part has been determined to be syn-anti-anti.

In order to establish the relative stereochemistry between the C23-C26 and the C29-C32 parts in the natural C21-C34 fragment 2 and to determine the absolute stereochemistry of 2, we have synthesized two diastereomeric urethanes 13 and 14 enantioselectively (Scheme 2, 3). The acetonide 7b was converted into aldehyde 9 via cyanide 8 by a six-step sequence: 1) Bu4NF, THF; 2) p-TsCl, pyridine; 3) NaCN, DMSO; 4) DIBAL, CH₂Cl₂; 5) AcOH, H₂O, THF; 6) DMSO, (COCl₂, Et₃N, CH₂Cl₂. Protection of two hydroxyl groups of diol **6b** (TBDPSCl and BnBr) followed by manipulation of the 1,2-diol moiety gave an epoxide, which was transformed into dithiane 10. The dithiane 10 was converted into phosphonium salt 11 as follows: 1) hydrolysis of a dithiane moiety; 2) NaBH₄ reduction; 3) protection of the primary hydroxyl group; 4) desilylation; 5) conversion into the iodide; and 6) treatment with PPh3. The Wittig reaction of

aldehyde 9 with phosphonium salt 11 afforded olefin 12 (44%). Catalytic reduction of olefin 12 and the subsequent transformation of the functional groups provided urethane 13.8

Starting from alcohol ent-4a,⁵ phosphonium salt ent-11 was prepared by the same sequence of reactions as described above (Scheme 3). The Wittig reaction of aldehyde 9 with phosphonium salt ent-11 followed by the sequence of reactions described for the synthesis of urethane 13 furnished urethane 14.⁹

The natural C21–C34 fragment 2 derived from 1 was identical with synthetic urethane 14 except for the sign of optical rotation [synthetic 14, $[\alpha]^{16}D + 31^{\circ}$ (c 0.48, CHCl₃); natural 2, $[\alpha]^{15}D - 31^{\circ}$ (c 0.40, CHCl₃)], thus establishing the absolute stereostructure of the C21–C34 fragment 2 to be the enantiomer of 14. On the basis of these results, the absolute stereochemistry of eight chiral centers in aplyronine A (1) was determined to be 235,245,255,265,29R,30R,31R,32R as shown below.

Acknowledgment. This work was supported in part by Grants-in-Aid for Scientific Research (Nos. 04403009 and 03640472) from the Ministry of Education, Science, and Culture, Japan, the Fujisawa Foundation, the Shorai Foundation for Science and Technology, the Naito Foundation, the Ciba-Geigy Foundation (Japan) for the Promation of Science, and the Asahi Glass Foundation.

REFERENCES AND NOTES

- 1. Yamada, K.; Ojika, M.; Ishigaki, T.; Yoshida, Y.; Ekimoto, H.; Arakawa, M. J. Am. Chem. Soc. in press.
- 2. Ojika, M.; Kigoshi, H.; Ishigaki, T.; Yamada, K. Tetrahedron Lett., preceding paper in this issue.
- 3. The selected ¹H NMR data (CDCl₃, 500 MHz) for 3: $J_{23,24} = 4.2$ Hz, $J_{24,25} = 7.3$ Hz $J_{25,26} = 4.9$ Hz; $\delta_{24-Me} = 0.85$, $\delta_{26-Me} = 0.96$.
- 4. Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873-3888 and references cited therein.
- 5. ent-4a: Mori, K.; Seu, Y.-B. Tetrahedron, 1988, 44, 1035-1038.
- 6. All new compounds described here afforded satisfactory spectroscopic data including HRMS.
- 7. The alcohol 4b was prepared from *trans*-4-benzyloxy-2-buten-1-ol. cf. Roush, W. R.; Adam, M. A.; Peseckis S. M. *Tetrahedron Lett.* 1983, 24, 1377-1380.
- 8. $[\alpha]^{20}_{D} 14^{\circ} (c \ 0.39, CHCl_3)$; IR (CHCl_3) 3430, 1730, 1595, 1520, 1375, 1075, 965 cm⁻¹; ¹H NMR (CDCl_3, 270 MHz) $\delta \ 0.84-0.95$ (m, 1 H), 0.88 (d, J = 7 Hz, 3 H), 0.97 (d, J = 7 Hz, 3 H), 1.05–2.08 (m, 8 H), 1.09 (d, J = 7 Hz, 3 H), 1.09 (d, J = 6 Hz, 3 H), 2.02 (s, 3 H), 2.02 (s, 3 H), 2.14–2.34 (m, 3 H), 3.76–3.82 (m, 1 H), 3.79 (d, J = 2 Hz, 1 H), 4.05–4.26 (m, 2 H), 4.81 (dd, J = 10, 3 Hz, 1 H), 5.10 (ddd, J = 8, 6, 2 Hz, 1 H), 5.42 (d, J = 4 Hz, 1 H), 6.78 (br s, 1 H), 7.27–7.43 (m, 4 H); HRFABMS *m*/z 612.2175 (M + H)⁺, calcd for C₂₉H₄₃⁷⁹BrNO₈ 612.2172.
- 9. $[\alpha]^{16}_{D} + 31^{\circ}$ (c 0.48, CHCl₃); HRFABMS m/z 612.2199 (M + H)⁺, calcd for C₂₉H₄₃⁷⁹BrNO₈ 612.2172.

(Received in Japan 13 September 1993)